

創薬活動の進捗状況

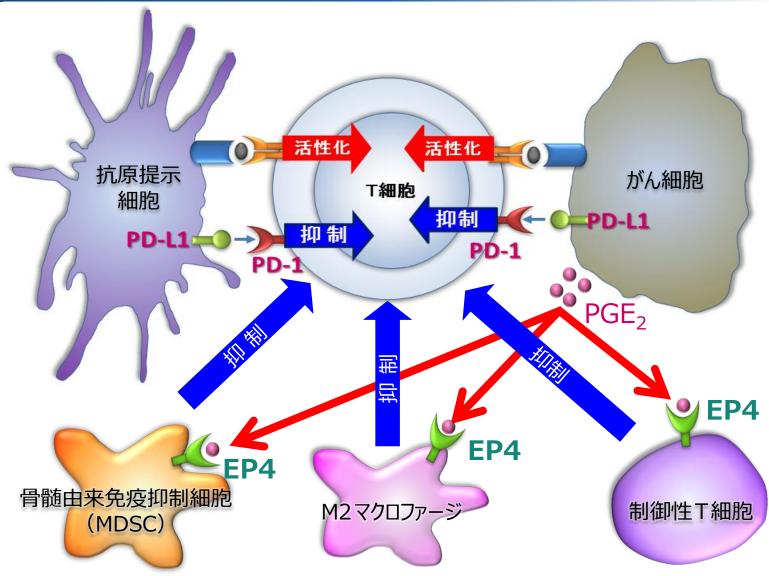
平成 29 年 5 月 12 日

自社創薬由来の新薬候補化合物

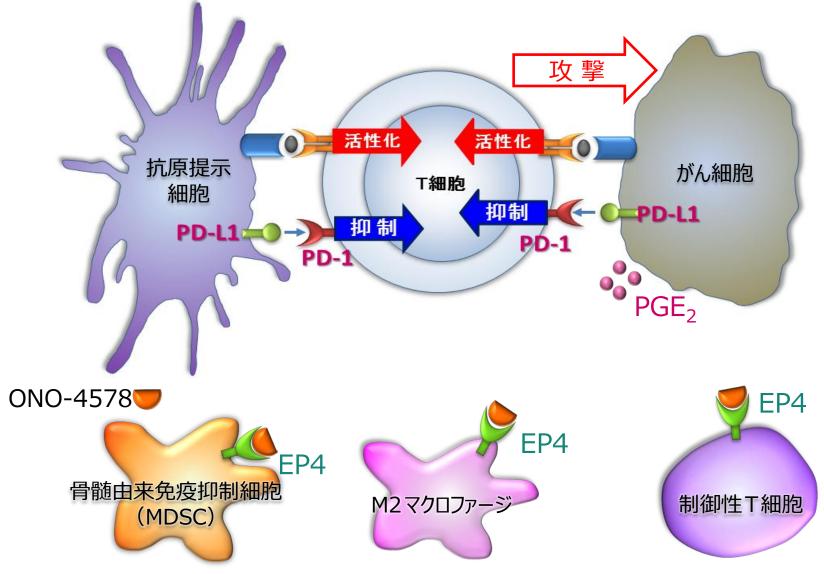
開発コード (一般名)	予定効能/薬理作用	フェーズ・地域	
ONO-4474	変形性関節症/Trk 阻害作用	II	欧州
ONO-8577	過活動膀胱/膀胱平滑筋弛緩作用	II	日本
ONO-9054 (Sepetaprost)	緑内障·高眼圧症/FP/EP3作動作用	Ⅱ *1	米国*1
ONO-4059 (Tirabrutinib)	Démis 1、1。1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1	I I *2	欧米*2
	B細胞リンパ腫/Btk阻害作用	I	日本
	シェーグレン症候群/Btk 阻害作用	I *2	米国*2
ONO-8055	低活動膀胱/EP2/EP3作動作用	I	欧州
ONO-2160/CD	パーキンソン病/レボドパプロドラッグ	I	日本
ONO-7475	急性白血病/Axl/Mer阻害作用	I	米国
ONO-4578	固形がん/EP4 拮抗作用	I	日本
ONO-7579	固形がん/Trk 阻害作用	I	欧米

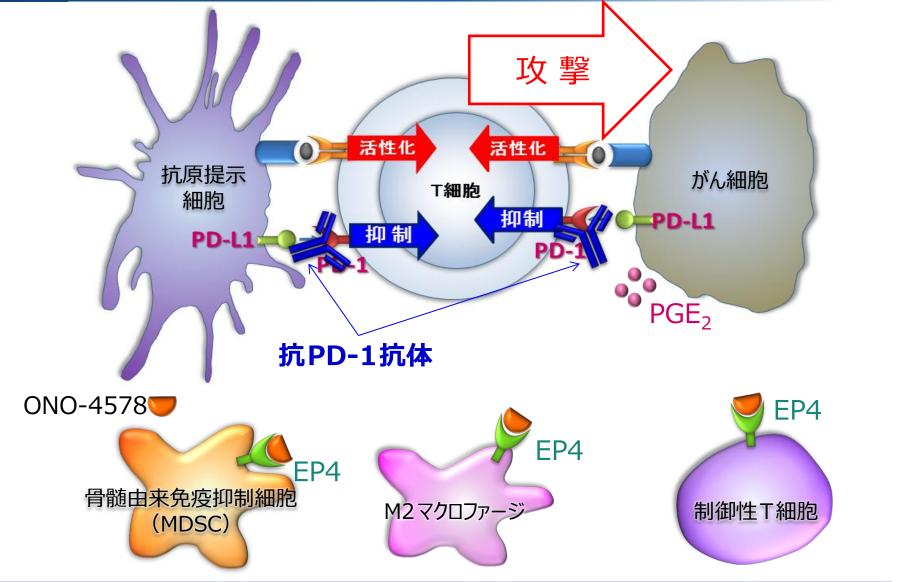
赤字: 平成28年5月からのアップデート

*1参天製薬が実施 *2Gilead Sciences社が実施


ONO-4578

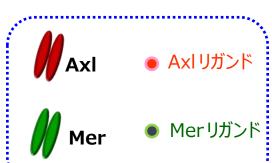
薬理作用	選択的EP4受容体拮抗作用(腫瘍免疫活性化)
剤型	経口剤
適応候補	固形がん
期待	抗PD-1抗体との併用療法で、抗腫瘍効果を増強する薬剤
現状	国内第 I 相試験を2017年1月から開始 (単剤投与で安全性、忍容性、薬物動態を確認中)


がん微小環境におけるPGE2の作用

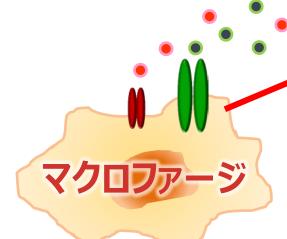

ONO-4578はがん免疫抑制作用を解除する

抗PD-1抗体との併用で抗腫瘍効果の増強期待300

ONO-7475


薬理作用	選択的Axl/Merデュアル阻害作用	
剤型	経口剤	
適応候補	急性白血病	
期待	Axl/Merが増殖に関与するがん腫に対する治療薬	
現状	米国で第 I 相試験を2017年1月から開始	

更なる期待として、 腫瘍免疫活性化薬としての可能性


AxI/Merはがん免疫を抑制する

Axl を過剰発現 免疫応答から回避

活性化時にAxI/Merリガンドを放出 (ネガティブフィードバック機構)

T細胞

Axl/Merを活性化

⇒ 炎症抑制型マクロファージに誘導

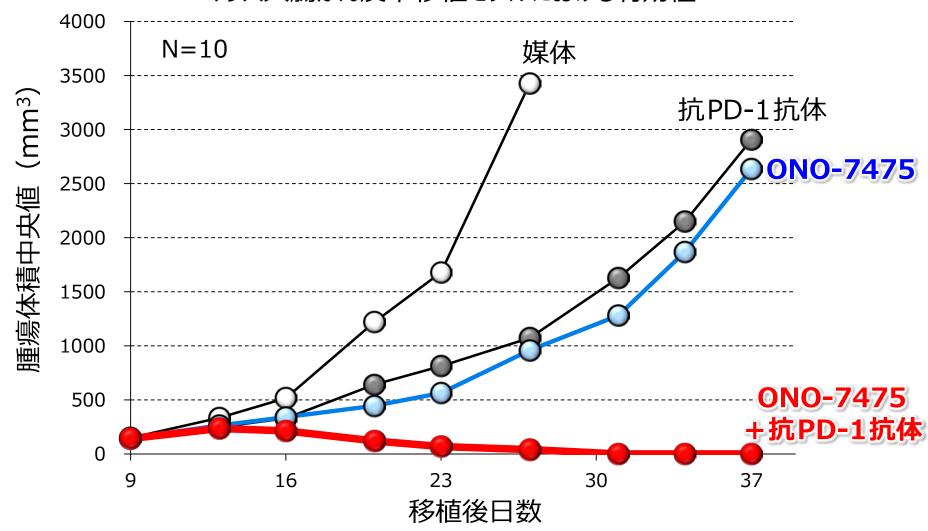
AxI/Merを活性化

⇒ T細胞への抑制シグナルを送る

ono 小野薬品工業株式会社

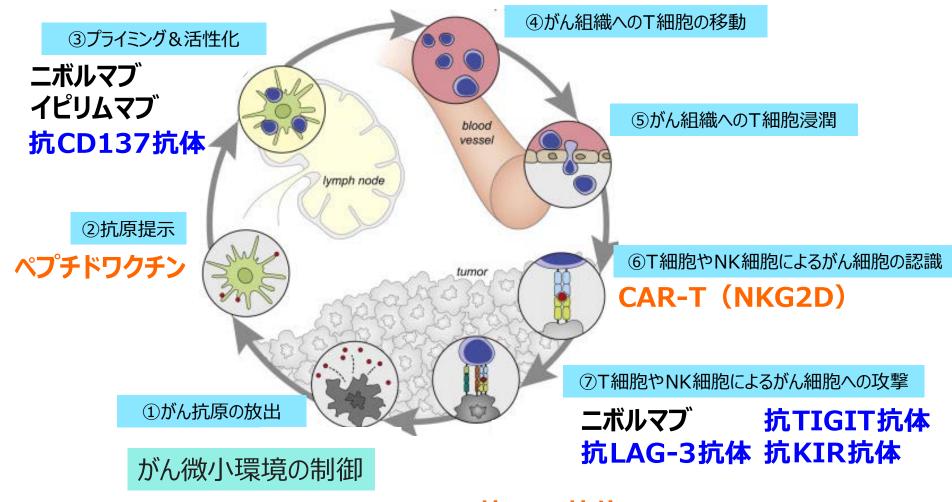
ONO-7475はがん免疫抑制作用を解除する

AxI/Merのキナーゼ活性を阻害 炎症抑制型マクロファージを抑制 AxI/Merのキナーゼ活性を阻害


T細胞への抑制シグナルを阻害

ono 小野薬品工業株式会社

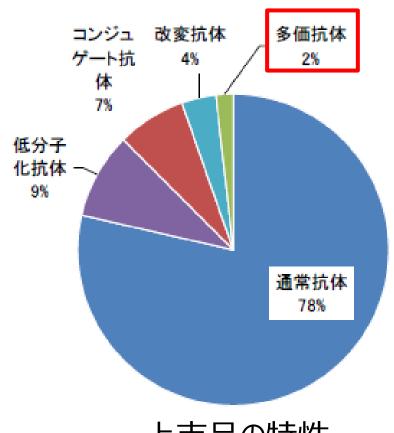
ONO-7475と抗PD-1抗体の併用療法に期待

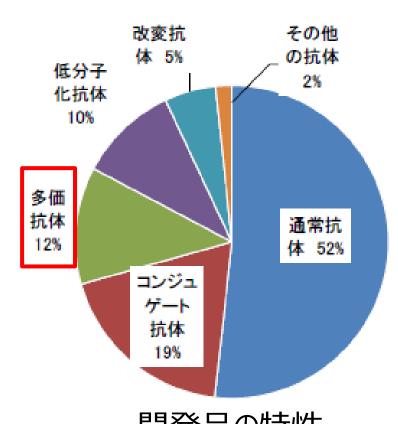


腫瘍免疫領域におけるトップランナーを目指して

ONO-4578 ONO-7475 抗CD4抗体 抗CSF-1R抗体 IDO1阻害剤 抗CCR4抗体

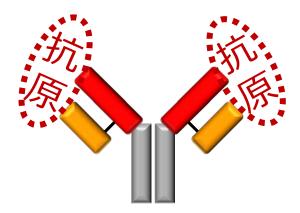
Immunity. 2013 Jul 25;39(1):1-10改变.

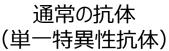


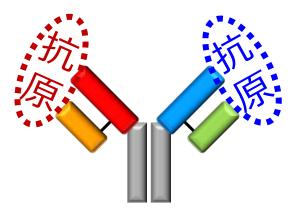

次世代抗体技術を利用した創薬への取り組み

抗体医薬の開発状況(抗体の特性別)

上市品の特性 (2016年4月時点 全56品)


開発品の特性 (2016年4月時点 全603品)


2016年版 世界の抗体医薬品開発の方向性とビジネス展望 株式会社 BBブリッジより許可を得て引用



二重特異性抗体への取り組み

二重特異性抗体


【特長】

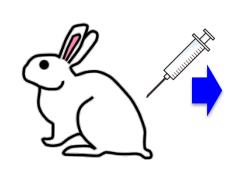
- 異なる種類の蛋白に結合 【応用例】
- T細胞の腫瘍組織への集積
- デュアル中和抗体
- 血液凝固因子の足場

提携開始時期	提携会社	目的
2014年4月	オランダ Merus社	自己免疫疾患領域における 新薬候補化合物の創製
2016年12月	米国 Ligand社	完全ヒト型単一特異性または 二重特異性抗体を創製する権利の取得
2017年3月	スイス Numab社	がん免疫領域における 新薬候補化合物の創製

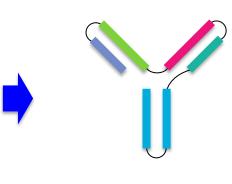
Ligand社の技術について

<u>Ligand社技術(OmniAb®)の特長</u>

- マウスに加えラットが使用できる
 - ⇒ マウス抗原に対する抗体を取得可能
 - ⇒ 創薬コンセプトの検証のスピードアップを期待
- ヒト型抗体を取得可能
- 二重特異性抗体作製に最も重要な材料抗体を作製可能



Numab社の技術について



免疫

多重特異性 部分抗体~完全抗体様

<u>Numab社技術の特長</u>

- ウサギの使用
- ・ウサギ由来の抗体をヒト化する技術
- 蛋白の安定化技術
 - ✓ 通常の抗体並みに安定な蛋白を作製できる
- 標準化された工業生産方法を使用できる可能性が高い

「ポスト オプジーボ」を見据えて

アンメット・メディカルニーズに対する ファーストインクラス新薬の創製

自社技術ノウハウ脂質、腫瘍・免疫など

外部の最先端技術抗体技術など

創薬シーズ

世界トップレベルの アカデミアとの共同研究